Trace Formulae and Inverse Spectral Theory\\ for Schr\"odinger Operators
نویسندگان
چکیده
منابع مشابه
Trace Formulae and Inverse Spectral Theory for Schrödinger Operators
We extend the well-known trace formula for Hill's equation to general one-dimensional Schrodinger operators. The new function <J , which we introduce, is used to study absolutely continuous spectrum and inverse problems. In this note we will consider one-dimensional Schrodinger operators d2 (IS) H = -j-1 + V(x) onL2(R;dx)
متن کاملTrace Formulas and Inverse Spectral Theory for Jacobi Operators
Based on high energy expansions and Herglotz properties of Green and Weyl m-functions we develop a self-contained theory of trace formulas for Jacobi operators. In addition, we consider connections with inverse spectral theory, in particular uniqueness results. As an application we work out a new approach to the inverse spectral problem of a class of reflectionless operators producing explicit ...
متن کاملSymplectic inverse spectral theory for pseudodifferential operators
We prove, under some generic assumptions, that the semiclassical spectrum modulo O(~) of a one dimensional pseudodifferential operator completely determines the symplectic geometry of the underlying classical system. In particular, the spectrum determines the hamiltonian dynamics of the principal symbol.
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملTrace Formulae for Matrix Integro-Differential Operators
where λ is a spectral parameter, Y (x) = [yk(x)]k=1,d is a column vector, Q(x) and M(x, t) are d×d real symmetric matrix-valued functions, and h and H are d×d real symmetric constant matrices. M(x, t) is an integrable function on the set D0 def ={(x, t) : 0≤ t ≤ x ≤ π, x, t ∈ R}, Q ∈ C1[0,π], where C1[0,π] denotes a set whose element is a continuously differentiable function on [0,π]. In partic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1993
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1993-00431-2